26 research outputs found

    Peptide Bond Distortions from Planarity: New Insights from Quantum Mechanical Calculations and Peptide/Protein Crystal Structures

    Get PDF
    By combining quantum-mechanical analysis and statistical survey of peptide/protein structure databases we here report a thorough investigation of the conformational dependence of the geometry of peptide bond, the basic element of protein structures. Different peptide model systems have been studied by an integrated quantum mechanical approach, employing DFT, MP2 and CCSD(T) calculations, both in aqueous solution and in the gas phase. Also in absence of inter-residue interactions, small distortions from the planarity are more a rule than an exception, and they are mainly determined by the backbone ψ dihedral angle. These indications are fully corroborated by a statistical survey of accurate protein/peptide structures. Orbital analysis shows that orbital interactions between the σ system of Cα substituents and the π system of the amide bond are crucial for the modulation of peptide bond distortions. Our study thus indicates that, although long-range inter-molecular interactions can obviously affect the peptide planarity, their influence is statistically averaged. Therefore, the variability of peptide bond geometry in proteins is remarkably reproduced by extremely simplified systems since local factors are the main driving force of these observed trends. The implications of the present findings for protein structure determination, validation and prediction are also discussed

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+ 2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2 • − and OH•. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances

    What is the mechanism of formation of hydroxyaluminosilicates?

    Get PDF
    The formation of hydroxyaluminosilicates is integral to the biogeochemical cycles of aluminium and silicon. The unique inorganic chemistry which underlies their formation explains the non-essentiality in biota of both of these elements. However, the first steps in the formation of hydroxyaluminosilicates were hitherto only theoretical and plausibly only accessible in silico. Herein we have used computational chemistry to identify and define for the first time these unique and ultimately critically important reaction steps. We have used density-functional theory combined with solvent continuum models to confirm first, the nature of the reactants, an aluminium hydroxide dimer and silicic acid, second, the reaction products, two distinct hydroxyaluminosilicates A and B and finally, how these are the precursors to highly insoluble hydroxyaluminosilicates the role of which has been and continues to be to keep inimical aluminium out of biota

    Ceramide increases free volume voids in DPPC membranes

    No full text
    Positron annihilation lifetime spectroscopy (PALS) can measure changes in local free volume voids in lipid bilayers. PALS has been applied, together with differential scanning calorimetry (DSC) and molecular dynamics (MD) simulations, to study free volume voids in DPPC and DPPC:ceramide (85:15 mol:mol) model membranes in the 20-60 °C range. The free volume void average size clearly increases with the gel-fluid phase transition of the lipid, or lipid mixture. Ceramide increases void size at all temperatures, particularly in the range causing the gel-fluid transition of the mixture. A parallel study of PALS and calorimetric data indicates that, for the complex thermotropic transition of the DPPC-ceramide mixture, PALS is detecting the transition of the DPPC component, while calorimetry changes indicate mainly the melting of the ceramide-enriched domains. Molecular dynamics calculations provide a clear distinction between ceramide-rich and poor domains, and show that the voids are predominantly located near the membrane nodal plane. The ceramide-induced increase in void volume size occurs as well at temperatures when both phospholipid and ceramide are in the fluid state, indicating that the effect is not the result of phospholipid-ceramide domain coexistence. The above observations may be related to hitherto unexplained properties of ceramide, such as the increase in membrane permeability, and the induction of transmembrane (flip-flop) lipid motion

    Cholesterol-Ceramide Interactions in Phospholipid and Sphingolipid Bilayers As Observed by Positron Annihilation Lifetime Spectroscopy and Molecular Dynamics Simulations

    No full text
    Free volume voids in lipid bilayers can be measured by positron annihilation lifetime spectroscopy (PALS). This technique has been applied, together with differential scanning calorimetry and molecular dynamics (MD) simulations, to study the effects of cholesterol (Chol) and ceramide (Cer) on free volume voids in sphingomyelin (SM) or dipalmitoylphosphatidylcholine (DPPC) bilayers. Binary lipid samples with Chol were studied (DPPC:Chol 60:40, SM:Chol 60:40 mol ratio), and no phase transition was detected in the 20-60 °C range, in agreement with calorimetric data. Chol-driven liquid-ordered phase showed an intermediate free volume void size as compared to gel and fluid phases. For SM and SM:Cer (85:15 mol:mol) model membranes measured in the 20-60 °C range the gel-to-fluid phase transition could be observed with a related increase in free volume, which was more pronounced for the SM:Cer sample. MD simulations suggest a hitherto unsuspected lipid tilting in SM:Cer bilayers but not in pure SM. Ternary samples of DPPC:Cer:Chol (54:23:23) and SM:Cer:Chol (54:23:23) were measured, and a clear pattern of free volume increase was observed in the 20-60 °C because of the gel-to-fluid transition. Interestingly, MD simulations showed a tendency of Cer to change its distribution along the membrane to make room for Chol in ternary mixtures. The results suggest that the gel phase formed in these ternary mixtures is stabilized by Chol-Cer interactions
    corecore